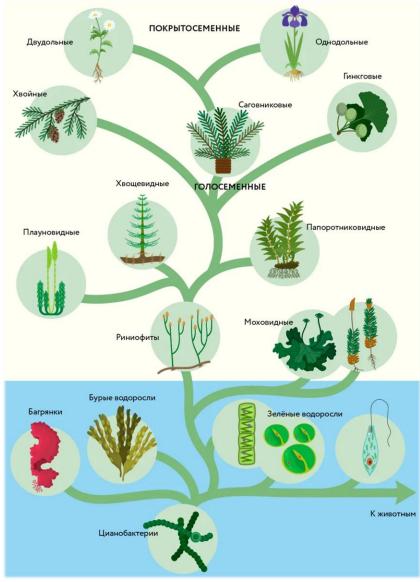


Казахский Национальный Университет имени аль-Фараби Факультет географии и природопользования Кафедра ЮНЕСКО по устойчивому развитию

Дисциплина «Биоразнообразие растений»

Современное состояние науки экологии растений и животных. Объекты исследования экологии растений и животных


Преподаватель: Садырова Гульбану Ауесхановна д.б.н., доцент

Цель лекции:

- Раскрыть предмет, задачи и методы экологии растений и животных как фундаментальной науки.
- Объяснить научные основы методов исследования в экологии.
- Рассмотреть взаимодействие растений и их сообществ с окружающей средой.
- Дать систематизированное представление об автотрофном блоке экосистем.
- Показать роль экологии в рациональном природопользовании и охране природы.
- Подчеркнуть междисциплинарный характер экологии в современной науке.

Экология (от греч. oikos — дом, logos — учение) — наука о взаимодействии организмов и их сообществ с окружающей средой.

С середины XX века экология приобрела особое значение как научная основа охраны природы и рационального природопользования. Основные задачи: изучение строения и функционирования биосферы,

круговорота химических элементов и процессов трансформации энергии Экология исследует закономерности распределения организмов в пространстве и их изменения во времени.

Экология растений фокусируется на взаимодействии растений и их сообществ с факторами среды.

Современное значение: решение глобальных проблем, таких как изменение климата и утрата биоразнообразия.

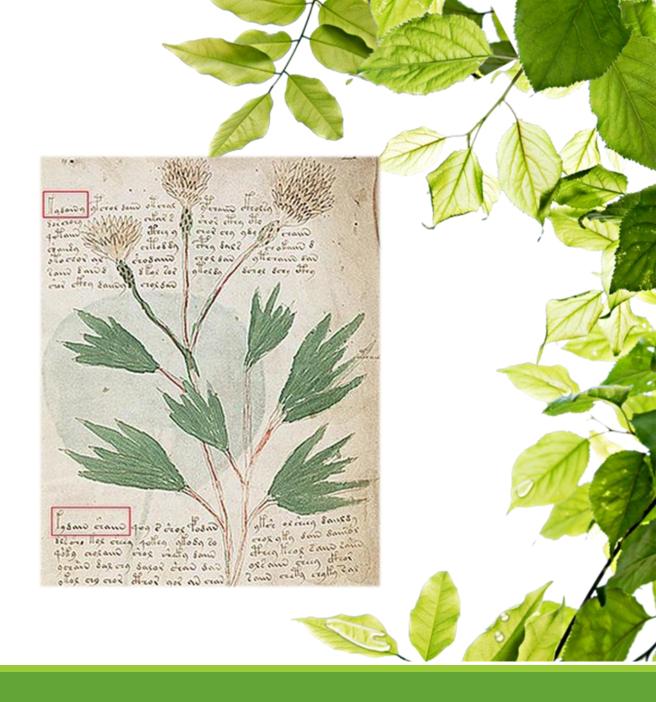
Экология выходит за рамки науки, становясь основой экологического мышления и политики.

Значение экологии в современности

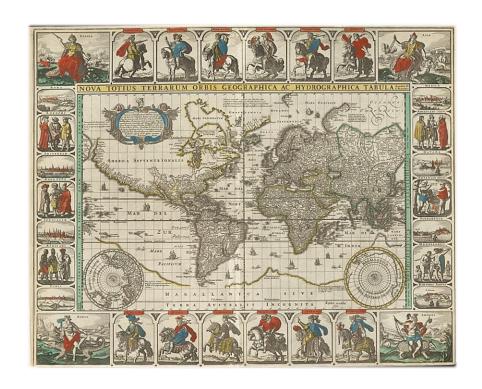
Экология занимает центральное место в биологических науках, объединяя ботанику, зоологию и географию. Её востребованность подтверждается созданием экологических специальностей и вузов. Экология растений изучает взаимодействие растений с окружающей средой на уровнях клетки, организма и сообщества. Она решает проблемы изменения климата и утраты биоразнообразия, обеспечивая базу для природопользования. Новые направления, такие как экологическая физиология, расширяют возможности науки. Экология готовит специалистов для восстановления экосистем, таких как леса.

Уровни изучения экологии растений

Экология растений изучает взаимодействие растений с окружающей средой на клеточном (цитоэкология), организменном (аутэкология), популяционном (демэкология) и ценотическом (синэкология) уровнях. Цитоэкология анализирует реакции клеток на температуру и засуху, аутэкология — влияние среды на особи, синэкология взаимодействие сообществ с факторами среды. Фитоценология изучает состав и функционирование растительных сообществ. Основной акцент — на аутэкологии, но синэкология важна для понимания сообществ. Экологическая физиология исследует фотосинтез и устойчивость растений.


История: Античность

Первые экологические данные о растениях зафиксированы на древнехеттских табличках более 3000 лет назад. Теофраст (372-287 до н.э.) в «Естественной истории» и «О причинах растений» описывал распространение растений и их приуроченность к местообитаниям, отмечая влияние почвы на их форму. Плиний Старший (23-79 н.э.) в «Естественной истории» обобщил знания античности о взаимодействии растений с окружающей средой. Эти работы заложили основы для систематического изучения экологии растений, подчеркивая их зависимость от среды.


Средневековье: Накопление знаний

В Средневековье знания о растениях накапливались в монастырях Европы. Альберт Великий (1193-1280) описывал зимний покой растений и влияние почвы и тепла на их рост, но допускал ошибочные взгляды о превращении видов. В XII-XIII веках университеты и обмен знаниями на латыни стимулировали развитие ботаники. Несмотря на суеверия, формировалась научная этика, а наблюдения за растениями заложили основу для экологических исследований, подчеркивая их зависимость от среды.

XVI-XVII века: Географические открытия

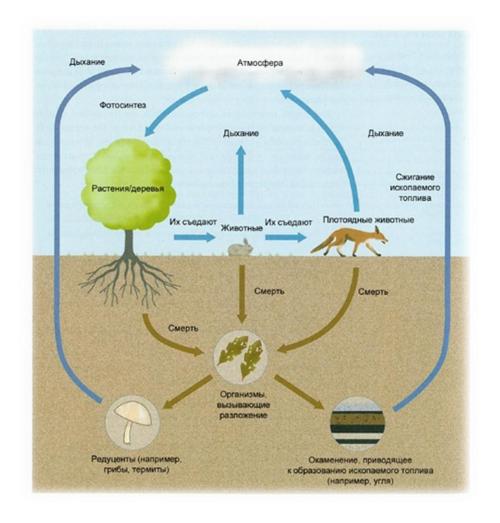
Географические открытия XVI-XVII веков обогатили ботанические знания. Андреа Чезальпино (1519-1603) описал функции частей растений и создал их классификацию. Жозеф Турнефор (1656-1708) изучал распределение растений в горах. Джон Рей (1627-1705) в «Historia plantarum» анализировал местообитания, вводя понятие экологической амплитуды. Ботанические сады стали центрами изучения экологии, расширяя понимание зависимости растений от среды и закладывая основы экологической ботаники.

XVIII век: Карл Линней и систематика

Карл Линней (1707-1778) в «Системе природы» (1735) ввёл бинарную номенклатуру, описал растительный покров гор, тундр и болот, разработав типологию местообитаний. Его концепция «экономии природы» подчеркивала баланс через взаимодействие организмов. Русские учёные, такие как Крашенинников, Гмелин, Паллас и Лепехин, изучали растительность Камчатки, Сибири, Крыма, показав влияние климата. Эти работы заложили основы экологической географии растений, систематизировав знания.

Средневековье: Накопление знаний

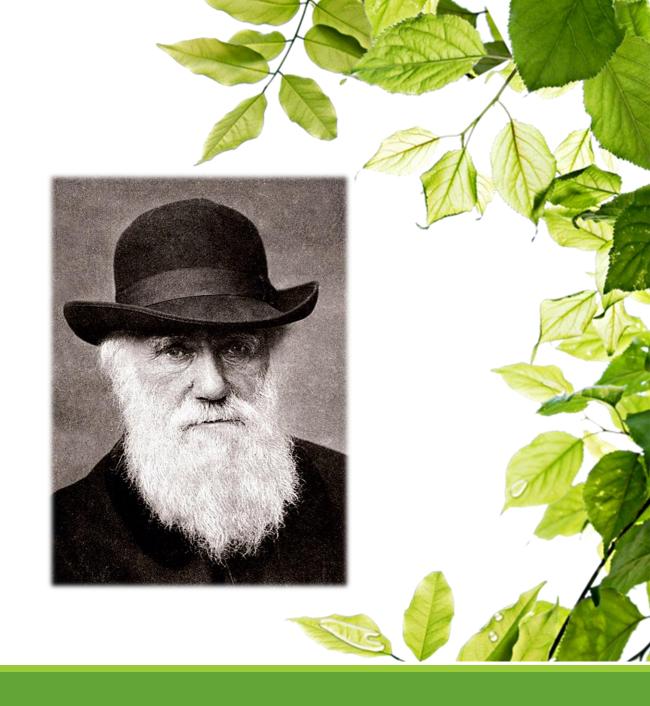
Иммануил Кант подчеркивал целостное описание природы, включая взаимодействие организмов и среды. Учёные отошли от креационизма, анализируя связи между физическими процессами и организмами. Исследования перешли от описания к анализу экологических закономерностей, что подготовило почву для ботанической географии и экологии. Этот период заложил основы системного подхода к изучению растительного покрова как единой системы.

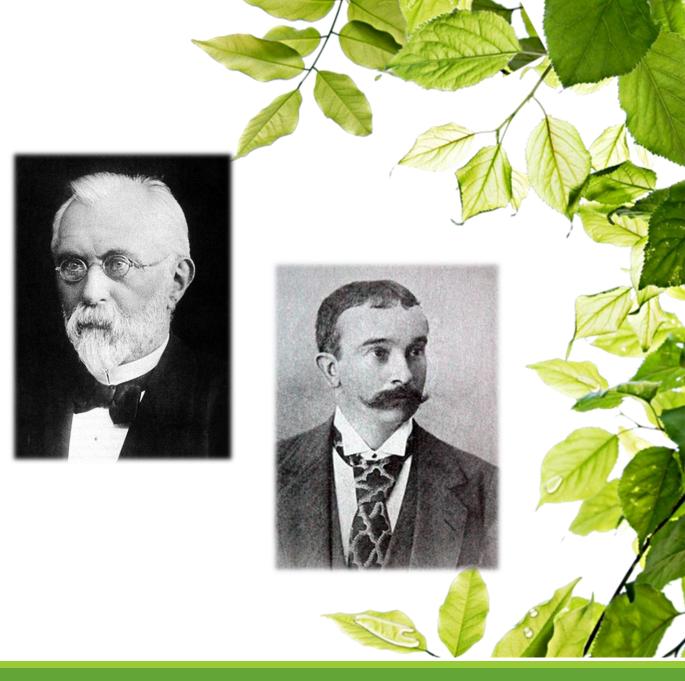

Начало XIX века: Александр Гумбольдт

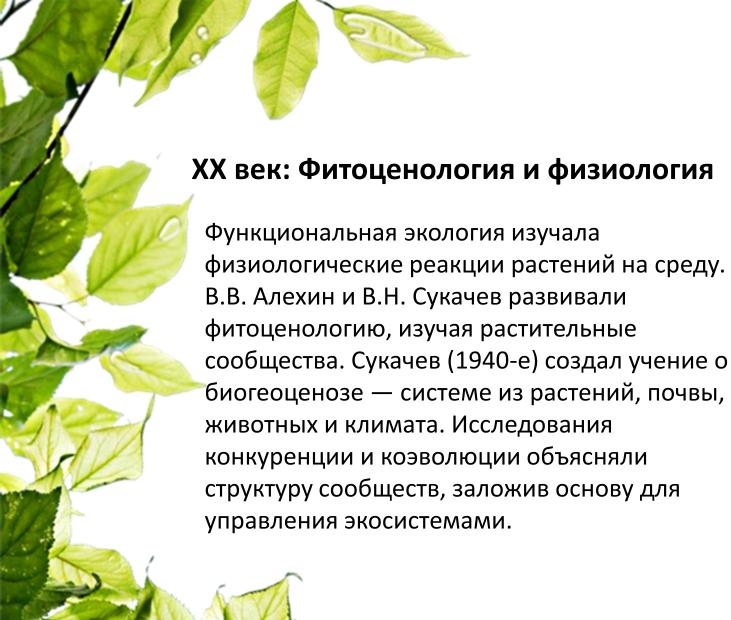

Александр Гумбольдт (1769-1859) в «Идеях о физиономичности растений» (1806) и «Географии растений» (1807) связал распределение растений с климатом. Его экспедиции в Америку, на Урал и в Сибирь показали влияние климата на растительный покров. Гумбольдт ввёл понятие растительного покрова как системы, заложив основы ботанической географии и экологического подхода, вдохновив исследования XIX века.

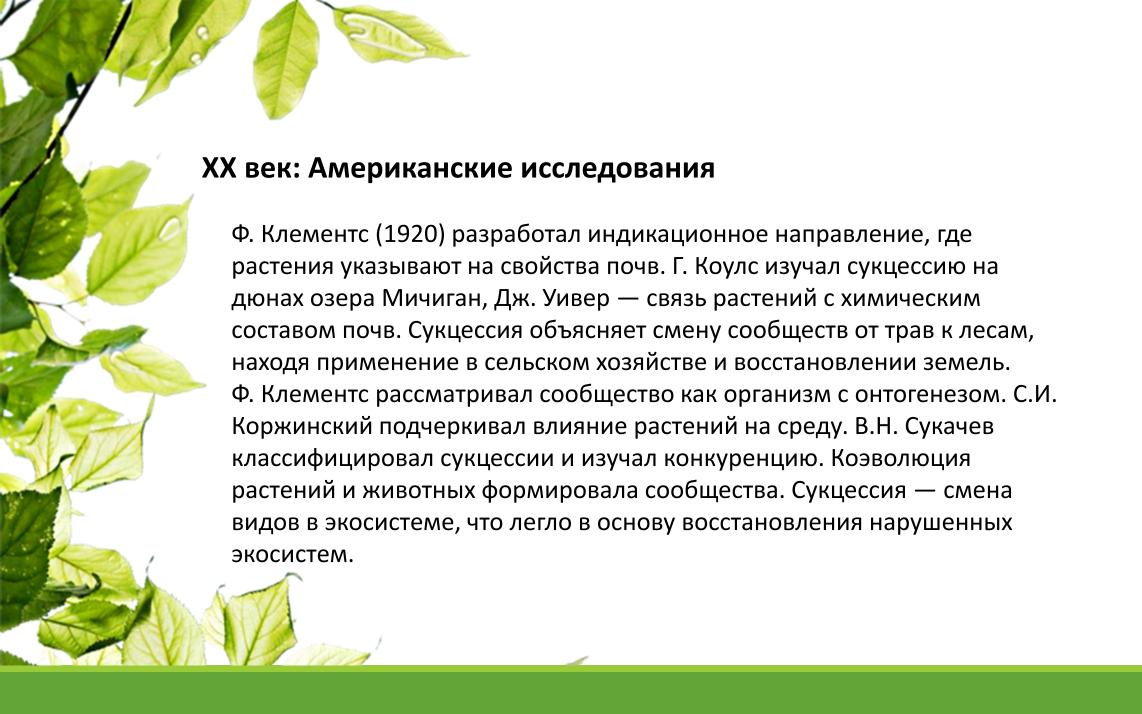
XIX век: Ламарк и факторы среды

Жан-Батист Ламарк предложил концепцию круговорота веществ, предугадывая понимание биосферы. Х. Уотсон (1833) выделил факторы среды: тепло, увлажнение, освещение, почва. Огюстен Декандоль (1820) различал «местонахождение» и «местообитание», вводя термин «эпирреология» (аутэкология), и подчеркивал роль конкуренции за ресурсы в распределении растений, заложив основы анализа экологических факторов.




XIX век: Либих и Дарвин


Ю. Либих (1840) сформулировал «Закон минимума», где рост ограничивает дефицитный элемент. Ч. Дарвин (1859) показал единство организма и среды. Э. Геккель (1869) ввёл термин «экология». Н.Ф. Леваковский изучал влияние среды на корни, А.Н. Бекетов — борьбу за существование растений. Эти идеи изменили подходы к экологии, заложив научную базу исследований


Конец XIX века: Оформление экологии

Е. Варминг (1895) в «Plantesamfund» систематизировал знания, классифицируя растения на гидрофиты, ксерофиты, мезофиты. А. Шимпер (1898) обобщил данные в «Географии растений». В 1910 году III Ботанический конгресс признал экологию разделом ботаники. Г.И. Танфильев подчеркивал роль почв, О. Друде разработал систему жизненных форм растений, оформив экологию как науку.

Популяции и экосистемы

энергии.

Популяционный подход использовал математические модели для изучения численности. Экосистемный подход анализировал круговорот веществ и энергии. Л.Г. Раменский (1924) ввёл экологическую индивидуальность видов, Г. Глизон — индивидуалистическую концепцию сообществ. Эти подходы сформировали методологию современной экологии, позволяя прогнозировать изменения.

Т.А. Работнов и А.А. Уранов развивали популяционную экологию в СССР. Д. Харпер изучал конкуренцию. А. Тенсли (1935) ввёл термин «экосистема». Л.Л. Россолимо и Г.Г. Винберг анализировали продуктивность фотосинтеза, Р. Линдеман показал, что 10% энергии переходит на следующий трофический уровень, объясняя потоки

Конец XX — XXI век: Современные тенденции

Современные тенденции экологии растений включают: изучение воздействия климатических изменений и загрязнений, исследование генетического разнообразия для сохранения видов, прикладные аспекты охраны окружающей среды (например, восстановление лесов и почв) и использование растений в качестве индикаторов состояния экосистем. Растения изучаются как ключевой элемент биосферы, участвующий в формировании климата и почв, и как основа пищевых цепей. Влияние антропогенных факторов: Изучение того, как загрязнение воздуха, воды и почвы, а также вырубка лесов влияют на растения и экосистемы. Изменение климата: Исследование адаптации растений к меняющимся условиям, таким как температура, осадки и повышение уровня \(CO_{2}\).Сохранение биоразнообразия: Работа по сохранению редких и исчезающих видов растений, изучение их генофонда и разработка мер по их защите. Экология почв: Исследование роли растений в формировании и поддержании плодородия почв, а также их взаимодействия с микроорганизмами в почве.

Список использованной литературы

- 1. Шаповалова А.А. Экология растений. Саратов, 2017. -125 с.
- 2. Афанасьева Н.Ф., Березина Н.А. Экология растений. Москва, 2016. 115 c.
- 3. Лемеза Н. А. Экология растений. Минск, 2018. 96 с.
- 4. Кобланова С. А. Экология растений. 2017. 112 с.
- 5. Родман Л.С.. География и экология растений [Электронный ресурс]: Учебное пособие. М: ТРАСЛОГ, 2018. 116 с.
- 6. Килякова Ю.В.. Водные растения [Электронный ресурс]: практикум /Оренбургский гос. ун-т. Оренбург: ОГУ, 2013. 201 с.